
Small-Disturbance Flow over

Two-Dimensional Airfoils

CHAPTER 5

Two-Dimensional Airfoils

Chapter 4:

1. The small-disturbance problem for a wing was established.

2. The problem is separated into the solution of two linear sub-problems,

namely the thickness and lifting problems.namely the thickness and lifting problems.

Chapter 5:

The thickness and lifting problems for airfoil will be solved. These solutions can

then be added to yield the complete small-disturbance solution for the flow past

a thin airfoil.
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2D symmetric airfoil, with a thickness distribution of ηt (x), at zero angle of attack

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

Recall that:

1. B.C. transferred to the z = 0 plane. 

2. B.C. at far from the body is automatically fulfilled by the basic source, doublet, or 

vortex elements.

Similar to 3D Eq. (4.30)
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The symmetry of problem (relative to z = 0 plane)                       source distribution

The potential of a single source:

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

The local radial velocity component at an arbitrary point (x, z):

The airfoil thickness effect is modeled by a continuous

(u,w) = qr (cos θ, sin θ)

The airfoil thickness effect is modeled by a continuous

σ(x) distribution along the x axis.

The velocity potential:
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The velocity field due to source distribution:

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

Chapter 3 (3.14)

OR
obtaining by observing the volume flow rate
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obtaining by observing the volume flow rate

volumetric flow



Eq. (5.10) into B.C.

The source distribution is easily obtained 

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

The velocity potential differentiating to obtain the velocity field

points not lying on the 

strip (0 < x < c, z = 0)

The axial velocity component at z = 0
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strip (0 < x < c, z = 0)

Using Bernoulli equation with Small Disturbance Assumptions (Chapter 4):

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

Symmetric u-velocity                      Same pressure distribution for upper & lower surfaceSymmetric u-velocity                      Same pressure distribution for upper & lower surface

The aerodynamic lift
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The drag force

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

Eq. (5.15) 

The symmetrical airfoil at zero angle of attack does not generate lift, drag, or pitching

moment. Evaluation of the velocity distribution needs to be done only to add this 

thickness effect to the lifting thin airfoil problem

Eq. (5.15) 

into Eq. (5.21)

Eq. (5.16)
symmetry properties 

of the integrand

thickness effect to the lifting thin airfoil problem

Calculating axial velocity or pressure on the airfoil:
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Approaching to x = x0 from left The integrand goes to −∞

Approaching to x = x0 from right The integrand goes to +∞

The Cauchy principal value of the improper integral

defined by

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

As an example:

A frequently used principal value integral in many small-disturbance flow applications

is the Glauert integral which has the form
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Example: Flow Past an Ellipse

ellipse with a thickness of t · c at zero angle of attack

Or

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

Or

To enable use of Eq. (5.22) the following transformation is introduced:

This integral needs to be evaluated in 

terms of its principal value

To enable use of Eq. (5.22) the following transformation is introduced:

which transforms the straight chord line into a semicircle. The leading edge of the 

ellipse (x = 0) is now at θ = 0 and the trailing edge (x = c) is at θ = π.
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With the aid of this transformation:

Substituting this into the u component:

5.1 Symmetric Airfoil with Nonzero Thickness at Zero AOA

Substituting this into the u component:

The pressure coefficient:

Eq. (5.22)

for n = 1
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Solution near the front and rear stagnation

points is incorrect.

As the thickness ratio decreases the pressure

distribution becomes more flat with a smaller

stagnation region and therefore the accuracy of

this solution improves.



Thin cambered airfoil, at an angle of attack α

The continuity equation & B.C. For small-disturbance inviscid, incompressible, and 

irrotational transferred to the z = 0 plane

5.2 Zero-Thickness Airfoil at AOA

Thus, the slope of the local (total) velocity must be equal to the camberline slope

Point vortex in the x–z plane, located at a point (x0, 0)

with a strength of γwith a strength of γ0

11

Cartesian coordinates the components of the velocity: 

5.2 Zero-Thickness Airfoil at AOA

OR

Point is placed on the x axis

The velocity potential and the resulting velocity field, due to vortex distribution:

Differentiating

Eq. (5.30)
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The x component of the velocity above (+) and 

below (−) a vortex distribuCon:

The w component of the velocity at z = 0

5.2 Zero-Thickness Airfoil at AOA

from

Section 3.14

The w component of the velocity at z = 0

The unknown vortex distribution γ (x) has to satisfy the zero normal flow boundary

condition on the airfoil.
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Eq. (5.38) into

Eq. (5.29)

However, the solution to this equation is not unique and an additional physical

condition is required.

Recall that: The flow leave the trailing edge smoothly and the velocity there be finite,

that is

5.2 Zero-Thickness Airfoil at AOA

The pressure distribution can be calculated by the steady-state Bernoulli equation for 

small-disturbance flow over the airfoil

The pressure difference across the airfoil

Kutta condition

The pressure difference across the airfoil

The pressure coefficient with the small-disturbance assumption
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The pressure difference coefficient 

between lower and upper surfaces



The solution for the aerodynamic loads on the thin, lifting airfoil requires the given

γ(x) on the airfoil. This can be obtained by solving the integral equation (5.39).

The classical approach is to approximate γ(x) by a trigonometric expansion and then 

the problem reduces to finding the coefficient values of this expansion.

5.3 Classical Solution of the Lifting Problem

transformation 

into trigonometric 

variables

The transformed Kutta condition now has the form
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γ (x)=?

A trigonometric expansion of the form:

Experimental evidence shows a large suction peak at the airfoil’s leading edge

5.3 Classical Solution of the Lifting Problem

satisfy the Kutta condition

The suggested solution for the circulation:

a function whose value is large at the leading

edge and reduces to 0 at the trailing edge

modeled by 

Cotangent function

The suggested solution for the circulation:
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An additional advantage of first term is 

that it induces a constant downwash 

on the airfoil, as will be evident later

To cancel the 2Q∞ term on the 

right-hand side of Eq. (5.46)



Determining the values of the An constant:

5.3 Classical Solution of the Lifting Problem

Substituting Eq. (5.48) 

into B.C. Eq. (5.46)
1

Recalling Glauert’s integral:

and replacing 1 by cos (0θ), the first term of the integral becomes

1

For the terms with the coefficients A1, A2, . . . , the following trigonometric relation is 

used
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2

This allows the presentation of the nth term in the following form

5.3 Classical Solution of the Lifting Problem

Using Glauert’s Using Glauert’s 

integral reduces to

3

1

3
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1

2
This is actually a Fourier expansion of the 

right-hand side of the equation that includes 

the information on the airfoil geometry



Multiplying both sides of the equation (5.50) by cosmθ

cosmθ(                      )

&

5.3 Classical Solution of the Lifting Problem

&
performing an integration from 0 → π

for each value of n, will result in the cancellation of all the nonorthogonal multipliers

(where m ≠n). 

Consequently, for each value of n the value of corresponding coefficient An is obtained

For a given airfoil geometry, the mean camberline ηc(x) is a known function and the 

coefficients A0, A1, A2, . . . can be computed by Eqs. (5.51) & (5.52).
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Summery

5.3 Classical Solution of the Lifting Problem

γ (x) = ?

transformation
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Suggested



Note that Eq. (5.50) can be rewritten as an expansion of the downwash distribution

w = w(θ) on the airfoil:

5.3 Classical Solution of the Lifting Problem

the downwash due to the first term (multiplied by A0) of the vortex

distribution is constant along the airfoil chord

The slope dηc/dx can be expanded as a Fourier series such that:

comparison with Eq. (5.50) indicates that
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contributions of the AOA & camber 

to the downwash explicitly

5.4 Aerodynamic Forces and Moments on a Thin Airfoil

Given airfoil 

geometry (ηc(x)) 

ComputingComputing

A0, A1, A2, . . .

Calculating pressure 

difference acroos thin airfoil

Evaluating aerodynamic 

coefficients 

Since AOA is small Q∞ is used instead of Q∞ cos α. The normal force Fz is then:

where
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coefficients 



The flat plate of is very thin and the x component of the force is zero

5.4 Aerodynamic Forces and Moments on a Thin Airfoil

an additional force 

must exist to balance 

From the Kutta–Joukowski theorem:

This force is called the leading-edge suction force Fx.s and is a result of the very high 

suction forces acting at the leading edge (where q →∞ and the local leading-edge 

radius is approaching zero). Using the exact solution (Section 6.5.2) near the leading 

edge of the flat plate & for the small angle of attack case is

must exist to balance 

these two calculations

edge of the flat plate & for the small angle of attack case is

This force cancels the drag component of the thin lifting airfoil obtained by integrating 

the pressure difference, so that the two-dimensional drag becomes zero.

This result – that the aerodynamic drag in two-dimensional inviscid incompressible 

flow is zero.                          d’Alembert’s paradox (1744)
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To evaluate the lift of the thin airfoil, the circulation of Eq. (5.54) is calculated

5.4 Aerodynamic Forces and Moments on a Thin Airfoil

indicates that only the first two terms of the circulation 
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indicates that only the first two terms of the circulation 

will have an effect on the lift and the integration over 

the airfoil of the higher-order terms will cancel out



The pitching moment about the y axis (L.E.) 
(positive for a clockwise rotation)

5.4 Aerodynamic Forces and Moments on a Thin Airfoil

Some trigonometric manipulations

The moment M along the x axis can be described in terms of the lift and the moment 

at the leading edge as
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The center of pressure xcp is defined as 

the point where the moment is zero

The airfoil section aerodynamic coefficients can be derived:

5.4 Aerodynamic Forces and Moments on a Thin Airfoil

Only function of α
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For flat plate dηc/dx = 0

zero-lift angle: a function 

of the camber



5.4 Aerodynamic Forces and Moments on a Thin Airfoil

The lift slope can be defined as:

The pitching moment coefficient (Eq. (5.64)) can be rewritten, using the formula for the 

the lift slope of a 2D airfoil is 2π and 

that the camber will have an effect 

similar to an AOA increment ∆α but 

will not change the lift slope

The pitching moment coefficient (Eq. (5.64)) can be rewritten, using the formula for the 

lift coefficient:

If the moments are calculated relative to the airfoil

c/4 point the first term in this equation disappears

27

independent of α aerodynamic center xac

Case I: Thin, lifting model

of a symmetric airfoil 

Represented by a flat plate

Example 1: Flat Plate

For the symmetric thin airfoil, the center of 

pressure and the aerodynamic center are 

Located at the quarter-chord location
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center of pressure



Case II: The free-stream angle of attack is zero, but the chord can be expressed as

Example 1: Flat Plate

Thus, both methods will lead to the same results.

The pressure coefficient difference, by substituting A0

& the corresponding circulation

Near L.E. the flat plate 

solution is singular & 

not accurate

free-stream coordinate system

a comparison with the results of a 

more accurate method (panel method)

for a NACA0012 symmetric airfoil. 
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Simple nonsymmetric chordline shape consider the parabolic camberline

ϵ: maximum height

Example 2: Thin Airfoil with a Parabolic Camber

Substituting this into Eq. (5.51) & (5.52)

Because of the orthogonal nature of the 

integral                                    all terms where m ≠ n will vanish. integral                                    all terms where m ≠ n will vanish. 

And, only the first coefficient will be nonzero
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for m = 1

clearly B1 = 4ϵ/c & other Bn= 0



The lift and the moment of the parabolic camber airfoil:

Example 2: Thin Airfoil with a Parabolic Camber

&

The center of pressure is obtained by dividing 

the moment by the lift

Note: at α = 0 the center of pressure is at the c/2 & as AOA increases it moves toward

the c/4.

airfoil will have zero lift when it is 

pitched to a negative angle of 

attack with a magnitude of 2ϵ/c

the c/4.

The pitching moment about the aerodynamic center from Eq. (5.70):

which indicates that the portion of the moment that is independent of AOA increases

with increased curvature (as ϵ/c increases) of the camberline.
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The main airfoil plane is placed on the x axis, & at a 

chordwise position k · c the flap is deflected by δf

for α = 0

Example 3: Flapped Airfoil

Thin flapped airfoil

(without a gap at point k·c)

One of the most frequently used control devices is the trailing-edge flap. The reason

for mounting such a device at T.E. can be observed by examining the (cos θ − 1) term 

in Eq. (5.67). 

This implies that the zero-lift angle is most influenced by the T.E. region where θ → π ; 

therefore, relatively small deflections of the flap at the T.E. will have noticeable effect.

Since the coefficients An are given as a function of the variable θ, the location of

the hinge point θk can be found by using
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The coefficients of Eqs. (5.51) and (5.52) are computed

Example 3: Flapped Airfoil

The lift and pitching moment coefficients

Setting α = 0 allows the incremental effect of the flap to be obtained

The increment in the moment at the aerodynamic center, c/4, due to the flap

deflection is obtained using Eq. (5.70) as
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Developing a simple lifting element based on the results for the lifting symmetrical

airfoil (flat plate)

5.5 The Lumped-Vortex Element

vortex distribution on a flat plate airfoil

equivalent lumped vortex 

representation

The vortex distribution can be replaced by a single vortex with:

1- The same strength

2- Since the lift of the symmetric airfoil acts at the center of pressure (at 

c/4), the concentrated vortex is placed there.
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Assuming that this point is at a distance k · c along the x axis.

specifying B.C. of zero normal velocity as:

5.5 The Lumped-Vortex Element

Representing lifting flat 

plate by only one vortex Γ

Specifying B.C. zero normal flow 

at the surface at only one point

specifying B.C. of zero normal velocity as:

circulation for a flat plate Example 1

for this 

model

The point at which B.C. needs to be specified (collocation point):

From Generalized Kutta–Joukowski theorem (Chapter 6), the lift force on an airfoil is:
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qI is the velocity induced by other 

vortices at the airfoil vortex location

The lift of the two-airfoil system, Γ1 and Γ2 are the circulations of the two airfoils

The two B.C. at the two collocation points require that the normal velocity component 

will be zero (Influence of the two vortices + free-stream normal component):

Example 1: Tandem Airfoils

force on each airfoil 

Eq. (5.100)

The front airfoil has a larger lift owing to the upwash induced by the second airfoil, 

and because of the same but reversed interaction the second airfoil will have less lift. 

Also, this effect is stronger when the airfoils are closer and the interaction will 

disappear as the distance increases. 

Note: The immediate effects of the tandem airfoil configuration could be estimated 

with minimum effort.
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The airfoil near the ground, which is modeled by using the mirror-image method.

to create a straight streamline at the ground plane two symmetrically positioned 

airfoils are considered.

B.C. at the collocation point, using lumped-vortex element:

Example 2: Ground Effect

Collection 

image vortex at

Note: The circulation of the image vortex is (−Γ)

The normal to the airfoil

velocity due to 

image vortex

Collection 

point at

The normal to the airfoil

Resulting circulation:
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exact solution for the flat plate in 

the absence of the ground plane

The lift force on the airfoil (using Eq. (5.100)):

Example 2: Ground Effect

Corresponding results for a parabolic arc airfoil                                          at zero AOA in 

ground effect:

c ∕ h → 0

airfoil far from 

the ground

Where ϵ is the maximum camber & h is measured from midchord.

The lift force for large ground height
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1. The lift slope of a 2D airfoil is 2π, (Eq. 5.66).

2. The pitching moment at the aerodynamic center

(at c/4) is independent of AOA. (excluding at stall).

5.6 Summary and Conclusions from Thin Airfoil Theory

3. Airfoil camber does not change the lift slope and can 

be viewed as an additional AOA effect (αL0 in Eq. (5.66)). 

The symmetric airfoil will have zero lift at α = 0 while 

the airfoil with camber has an “effective” AOA that is 

larger by αL0
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4. The T.E. section has a larger influence on the camber effect. Therefore, if the lift of

the airfoil needs to be changed without changing its AOA, then changing the chordline

geometry (e.g., by flaps or slats) at the T.E. region is more effective than at the L.E.

region.

5. The effect of thickness on the airfoil lift is not treated in a satisfactory manner by

5.6 Summary and Conclusions from Thin Airfoil Theory

5. The effect of thickness on the airfoil lift is not treated in a satisfactory manner by

the small-disturbance approach, but this will be calculated more accurately in the

chapters 6 & 7.

6. The 2D drag coefficient obtained by this model is zero

and there is no drag associated with the generation of 2D

lift. Experimental airfoil data, however, include drag due to

the viscous boundary layer on the airfoil, and this should

be included in engineering calculations. The experimental

drag coefficient values for the NACA 0009 airfoil at the
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drag coefficient values for the NACA 0009 airfoil at the

“zero-lift” drag coefficient is close to Cd = 0.0055


